Mini Shell
/*
* Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Hyperscan example program 2: pcapscan
*
* This example is a very simple packet scanning benchmark. It scans a given
* PCAP file full of network traffic against a group of regular expressions and
* returns some coarse performance measurements. This example provides a quick
* way to examine the performance achievable on a particular combination of
* platform, pattern set and input data.
*
* Build instructions:
*
* g++ -std=c++11 -O2 -o pcapscan pcapscan.cc $(pkg-config --cflags --libs libhs) -lpcap
*
* Usage:
*
* ./pcapscan [-n repeats] <pattern file> <pcap file>
*
* We recommend the use of a utility like 'taskset' on multiprocessor hosts to
* pin execution to a single processor: this will remove processor migration
* by the scheduler as a source of noise in the results.
*
*/
#include <cstring>
#include <chrono>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
#include <unistd.h>
// We use the BSD primitives throughout as they exist on both BSD and Linux.
#define __FAVOR_BSD
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include <net/ethernet.h>
#include <arpa/inet.h>
#include <pcap.h>
#include <hs.h>
using std::cerr;
using std::cout;
using std::endl;
using std::ifstream;
using std::string;
using std::unordered_map;
using std::vector;
// Key for identifying a stream in our pcap input data, using data from its IP
// headers.
struct FiveTuple {
unsigned int protocol;
unsigned int srcAddr;
unsigned int srcPort;
unsigned int dstAddr;
unsigned int dstPort;
// Construct a FiveTuple from a TCP or UDP packet.
FiveTuple(const struct ip *iphdr) {
// IP fields
protocol = iphdr->ip_p;
srcAddr = iphdr->ip_src.s_addr;
dstAddr = iphdr->ip_dst.s_addr;
// UDP/TCP ports
const struct udphdr *uh =
(const struct udphdr *)(((const char *)iphdr) + (iphdr->ip_hl * 4));
srcPort = uh->uh_sport;
dstPort = uh->uh_dport;
}
bool operator==(const FiveTuple &a) const {
return protocol == a.protocol && srcAddr == a.srcAddr &&
srcPort == a.srcPort && dstAddr == a.dstAddr &&
dstPort == a.dstPort;
}
};
// A *very* simple hash function, used when we create an unordered_map of
// FiveTuple objects.
struct FiveTupleHash {
size_t operator()(const FiveTuple &x) const {
return x.srcAddr ^ x.dstAddr ^ x.protocol ^ x.srcPort ^ x.dstPort;
}
};
// Helper function. See end of file.
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
unsigned int *length);
// Match event handler: called every time Hyperscan finds a match.
static
int onMatch(unsigned int id, unsigned long long from, unsigned long long to,
unsigned int flags, void *ctx) {
// Our context points to a size_t storing the match count
size_t *matches = (size_t *)ctx;
(*matches)++;
return 0; // continue matching
}
// Simple timing class
class Clock {
public:
void start() {
time_start = std::chrono::system_clock::now();
}
void stop() {
time_end = std::chrono::system_clock::now();
}
double seconds() const {
std::chrono::duration<double> delta = time_end - time_start;
return delta.count();
}
private:
std::chrono::time_point<std::chrono::system_clock> time_start, time_end;
};
// Class wrapping all state associated with the benchmark
class Benchmark {
private:
// Packet data to be scanned.
vector<string> packets;
// The stream ID to which each packet belongs
vector<size_t> stream_ids;
// Map used to construct stream_ids
unordered_map<FiveTuple, size_t, FiveTupleHash> stream_map;
// Hyperscan compiled database (streaming mode)
const hs_database_t *db_streaming;
// Hyperscan compiled database (block mode)
const hs_database_t *db_block;
// Hyperscan temporary scratch space (used in both modes)
hs_scratch_t *scratch;
// Vector of Hyperscan stream state (used in streaming mode)
vector<hs_stream_t *> streams;
// Count of matches found during scanning
size_t matchCount;
public:
Benchmark(const hs_database_t *streaming, const hs_database_t *block)
: db_streaming(streaming), db_block(block), scratch(nullptr),
matchCount(0) {
// Allocate enough scratch space to handle either streaming or block
// mode, so we only need the one scratch region.
hs_error_t err = hs_alloc_scratch(db_streaming, &scratch);
if (err != HS_SUCCESS) {
cerr << "ERROR: could not allocate scratch space. Exiting." << endl;
exit(-1);
}
// This second call will increase the scratch size if more is required
// for block mode.
err = hs_alloc_scratch(db_block, &scratch);
if (err != HS_SUCCESS) {
cerr << "ERROR: could not allocate scratch space. Exiting." << endl;
exit(-1);
}
}
~Benchmark() {
// Free scratch region
hs_free_scratch(scratch);
}
// Read a set of streams from a pcap file
bool readStreams(const char *pcapFile) {
// Open PCAP file for input
char errbuf[PCAP_ERRBUF_SIZE];
pcap_t *pcapHandle = pcap_open_offline(pcapFile, errbuf);
if (pcapHandle == nullptr) {
cerr << "ERROR: Unable to open pcap file \"" << pcapFile
<< "\": " << errbuf << endl;
return false;
}
struct pcap_pkthdr pktHeader;
const unsigned char *pktData;
while ((pktData = pcap_next(pcapHandle, &pktHeader)) != nullptr) {
unsigned int offset = 0, length = 0;
if (!payloadOffset(pktData, &offset, &length)) {
continue;
}
// Valid TCP or UDP packet
const struct ip *iphdr = (const struct ip *)(pktData
+ sizeof(struct ether_header));
const char *payload = (const char *)pktData + offset;
size_t id = stream_map.insert(std::make_pair(FiveTuple(iphdr),
stream_map.size())).first->second;
packets.push_back(string(payload, length));
stream_ids.push_back(id);
}
pcap_close(pcapHandle);
return !packets.empty();
}
// Return the number of bytes scanned
size_t bytes() const {
size_t sum = 0;
for (const auto &packet : packets) {
sum += packet.size();
}
return sum;
}
// Return the number of matches found.
size_t matches() const {
return matchCount;
}
// Clear the number of matches found.
void clearMatches() {
matchCount = 0;
}
// Open a Hyperscan stream for each stream in stream_ids
void openStreams() {
streams.resize(stream_map.size());
for (auto &stream : streams) {
hs_error_t err = hs_open_stream(db_streaming, 0, &stream);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to open stream. Exiting." << endl;
exit(-1);
}
}
}
// Close all open Hyperscan streams (potentially generating any
// end-anchored matches)
void closeStreams() {
for (auto &stream : streams) {
hs_error_t err = hs_close_stream(stream, scratch, onMatch,
&matchCount);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to close stream. Exiting." << endl;
exit(-1);
}
}
}
// Scan each packet (in the ordering given in the PCAP file) through
// Hyperscan using the streaming interface.
void scanStreams() {
for (size_t i = 0; i != packets.size(); ++i) {
const std::string &pkt = packets[i];
hs_error_t err = hs_scan_stream(streams[stream_ids[i]],
pkt.c_str(), pkt.length(), 0,
scratch, onMatch, &matchCount);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to scan packet. Exiting." << endl;
exit(-1);
}
}
}
// Scan each packet (in the ordering given in the PCAP file) through
// Hyperscan using the block-mode interface.
void scanBlock() {
for (size_t i = 0; i != packets.size(); ++i) {
const std::string &pkt = packets[i];
hs_error_t err = hs_scan(db_block, pkt.c_str(), pkt.length(), 0,
scratch, onMatch, &matchCount);
if (err != HS_SUCCESS) {
cerr << "ERROR: Unable to scan packet. Exiting." << endl;
exit(-1);
}
}
}
// Display some information about the compiled database and scanned data.
void displayStats() {
size_t numPackets = packets.size();
size_t numStreams = stream_map.size();
size_t numBytes = bytes();
hs_error_t err;
cout << numPackets << " packets in " << numStreams
<< " streams, totalling " << numBytes << " bytes." << endl;
cout << "Average packet length: " << numBytes / numPackets << " bytes."
<< endl;
cout << "Average stream length: " << numBytes / numStreams << " bytes."
<< endl;
cout << endl;
size_t dbStream_size = 0;
err = hs_database_size(db_streaming, &dbStream_size);
if (err == HS_SUCCESS) {
cout << "Streaming mode Hyperscan database size : "
<< dbStream_size << " bytes." << endl;
} else {
cout << "Error getting streaming mode Hyperscan database size"
<< endl;
}
size_t dbBlock_size = 0;
err = hs_database_size(db_block, &dbBlock_size);
if (err == HS_SUCCESS) {
cout << "Block mode Hyperscan database size : "
<< dbBlock_size << " bytes." << endl;
} else {
cout << "Error getting block mode Hyperscan database size"
<< endl;
}
size_t stream_size = 0;
err = hs_stream_size(db_streaming, &stream_size);
if (err == HS_SUCCESS) {
cout << "Streaming mode Hyperscan stream state size: "
<< stream_size << " bytes (per stream)." << endl;
} else {
cout << "Error getting stream state size" << endl;
}
}
};
// helper function - see end of file
static void parseFile(const char *filename, vector<string> &patterns,
vector<unsigned> &flags, vector<unsigned> &ids);
static hs_database_t *buildDatabase(const vector<const char *> &expressions,
const vector<unsigned> flags,
const vector<unsigned> ids,
unsigned int mode) {
hs_database_t *db;
hs_compile_error_t *compileErr;
hs_error_t err;
Clock clock;
clock.start();
err = hs_compile_multi(expressions.data(), flags.data(), ids.data(),
expressions.size(), mode, nullptr, &db, &compileErr);
clock.stop();
if (err != HS_SUCCESS) {
if (compileErr->expression < 0) {
// The error does not refer to a particular expression.
cerr << "ERROR: " << compileErr->message << endl;
} else {
cerr << "ERROR: Pattern '" << expressions[compileErr->expression]
<< "' failed compilation with error: " << compileErr->message
<< endl;
}
// As the compileErr pointer points to dynamically allocated memory, if
// we get an error, we must be sure to release it. This is not
// necessary when no error is detected.
hs_free_compile_error(compileErr);
exit(-1);
}
cout << "Hyperscan " << (mode == HS_MODE_STREAM ? "streaming" : "block")
<< " mode database compiled in " << clock.seconds() << " seconds."
<< endl;
return db;
}
/**
* This function will read in the file with the specified name, with an
* expression per line, ignoring lines starting with '#' and build a Hyperscan
* database for it.
*/
static void databasesFromFile(const char *filename,
hs_database_t **db_streaming,
hs_database_t **db_block) {
// hs_compile_multi requires three parallel arrays containing the patterns,
// flags and ids that we want to work with. To achieve this we use
// vectors and new entries onto each for each valid line of input from
// the pattern file.
vector<string> patterns;
vector<unsigned> flags;
vector<unsigned> ids;
// do the actual file reading and string handling
parseFile(filename, patterns, flags, ids);
// Turn our vector of strings into a vector of char*'s to pass in to
// hs_compile_multi. (This is just using the vector of strings as dynamic
// storage.)
vector<const char*> cstrPatterns;
for (const auto &pattern : patterns) {
cstrPatterns.push_back(pattern.c_str());
}
cout << "Compiling Hyperscan databases with " << patterns.size()
<< " patterns." << endl;
*db_streaming = buildDatabase(cstrPatterns, flags, ids, HS_MODE_STREAM);
*db_block = buildDatabase(cstrPatterns, flags, ids, HS_MODE_BLOCK);
}
static void usage(const char *prog) {
cerr << "Usage: " << prog << " [-n repeats] <pattern file> <pcap file>" << endl;
}
// Main entry point.
int main(int argc, char **argv) {
unsigned int repeatCount = 1;
// Process command line arguments.
int opt;
while ((opt = getopt(argc, argv, "n:")) != -1) {
switch (opt) {
case 'n':
repeatCount = atoi(optarg);
break;
default:
usage(argv[0]);
exit(-1);
}
}
if (argc - optind != 2) {
usage(argv[0]);
exit(-1);
}
const char *patternFile = argv[optind];
const char *pcapFile = argv[optind + 1];
// Read our pattern set in and build Hyperscan databases from it.
cout << "Pattern file: " << patternFile << endl;
hs_database_t *db_streaming, *db_block;
databasesFromFile(patternFile, &db_streaming, &db_block);
// Read our input PCAP file in
Benchmark bench(db_streaming, db_block);
cout << "PCAP input file: " << pcapFile << endl;
if (!bench.readStreams(pcapFile)) {
cerr << "Unable to read packets from PCAP file. Exiting." << endl;
exit(-1);
}
if (repeatCount != 1) {
cout << "Repeating PCAP scan " << repeatCount << " times." << endl;
}
bench.displayStats();
Clock clock;
// Streaming mode scans.
double secsStreamingScan = 0.0, secsStreamingOpenClose = 0.0;
for (unsigned int i = 0; i < repeatCount; i++) {
// Open streams.
clock.start();
bench.openStreams();
clock.stop();
secsStreamingOpenClose += clock.seconds();
// Scan all our packets in streaming mode.
clock.start();
bench.scanStreams();
clock.stop();
secsStreamingScan += clock.seconds();
// Close streams.
clock.start();
bench.closeStreams();
clock.stop();
secsStreamingOpenClose += clock.seconds();
}
// Collect data from streaming mode scans.
size_t bytes = bench.bytes();
double tputStreamScanning = (bytes * 8 * repeatCount) / secsStreamingScan;
double tputStreamOverhead = (bytes * 8 * repeatCount) / (secsStreamingScan + secsStreamingOpenClose);
size_t matchesStream = bench.matches();
double matchRateStream = matchesStream / ((bytes * repeatCount) / 1024.0); // matches per kilobyte
// Scan all our packets in block mode.
bench.clearMatches();
clock.start();
for (unsigned int i = 0; i < repeatCount; i++) {
bench.scanBlock();
}
clock.stop();
double secsScanBlock = clock.seconds();
// Collect data from block mode scans.
double tputBlockScanning = (bytes * 8 * repeatCount) / secsScanBlock;
size_t matchesBlock = bench.matches();
double matchRateBlock = matchesBlock / ((bytes * repeatCount) / 1024.0); // matches per kilobyte
cout << endl << "Streaming mode:" << endl << endl;
cout << " Total matches: " << matchesStream << endl;
cout << std::fixed << std::setprecision(4);
cout << " Match rate: " << matchRateStream << " matches/kilobyte" << endl;
cout << std::fixed << std::setprecision(2);
cout << " Throughput (with stream overhead): "
<< tputStreamOverhead/1000000 << " megabits/sec" << endl;
cout << " Throughput (no stream overhead): "
<< tputStreamScanning/1000000 << " megabits/sec" << endl;
cout << endl << "Block mode:" << endl << endl;
cout << " Total matches: " << matchesBlock << endl;
cout << std::fixed << std::setprecision(4);
cout << " Match rate: " << matchRateBlock << " matches/kilobyte" << endl;
cout << std::fixed << std::setprecision(2);
cout << " Throughput: "
<< tputBlockScanning/1000000 << " megabits/sec" << endl;
cout << endl;
if (bytes < (2*1024*1024)) {
cout << endl << "WARNING: Input PCAP file is less than 2MB in size." << endl
<< "This test may have been too short to calculate accurate results." << endl;
}
// Close Hyperscan databases
hs_free_database(db_streaming);
hs_free_database(db_block);
return 0;
}
/**
* Helper function to locate the offset of the first byte of the payload in the
* given ethernet frame. Offset into the packet, and the length of the payload
* are returned in the arguments @a offset and @a length.
*/
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
unsigned int *length) {
const ip *iph = (const ip *)(pkt_data + sizeof(ether_header));
const tcphdr *th = nullptr;
// Ignore packets that aren't IPv4
if (iph->ip_v != 4) {
return false;
}
// Ignore fragmented packets.
if (iph->ip_off & htons(IP_MF|IP_OFFMASK)) {
return false;
}
// IP header length, and transport header length.
unsigned int ihlen = iph->ip_hl * 4;
unsigned int thlen = 0;
switch (iph->ip_p) {
case IPPROTO_TCP:
th = (const tcphdr *)((const char *)iph + ihlen);
thlen = th->th_off * 4;
break;
case IPPROTO_UDP:
thlen = sizeof(udphdr);
break;
default:
return false;
}
*offset = sizeof(ether_header) + ihlen + thlen;
*length = sizeof(ether_header) + ntohs(iph->ip_len) - *offset;
return *length != 0;
}
static unsigned parseFlags(const string &flagsStr) {
unsigned flags = 0;
for (const auto &c : flagsStr) {
switch (c) {
case 'i':
flags |= HS_FLAG_CASELESS; break;
case 'm':
flags |= HS_FLAG_MULTILINE; break;
case 's':
flags |= HS_FLAG_DOTALL; break;
case 'H':
flags |= HS_FLAG_SINGLEMATCH; break;
case 'V':
flags |= HS_FLAG_ALLOWEMPTY; break;
case '8':
flags |= HS_FLAG_UTF8; break;
case 'W':
flags |= HS_FLAG_UCP; break;
case '\r': // stray carriage-return
break;
default:
cerr << "Unsupported flag \'" << c << "\'" << endl;
exit(-1);
}
}
return flags;
}
static void parseFile(const char *filename, vector<string> &patterns,
vector<unsigned> &flags, vector<unsigned> &ids) {
ifstream inFile(filename);
if (!inFile.good()) {
cerr << "ERROR: Can't open pattern file \"" << filename << "\"" << endl;
exit(-1);
}
for (unsigned i = 1; !inFile.eof(); ++i) {
string line;
getline(inFile, line);
// if line is empty, or a comment, we can skip it
if (line.empty() || line[0] == '#') {
continue;
}
// otherwise, it should be ID:PCRE, e.g.
// 10001:/foobar/is
size_t colonIdx = line.find_first_of(':');
if (colonIdx == string::npos) {
cerr << "ERROR: Could not parse line " << i << endl;
exit(-1);
}
// we should have an unsigned int as an ID, before the colon
unsigned id = std::stoi(line.substr(0, colonIdx).c_str());
// rest of the expression is the PCRE
const string expr(line.substr(colonIdx + 1));
size_t flagsStart = expr.find_last_of('/');
if (flagsStart == string::npos) {
cerr << "ERROR: no trailing '/' char" << endl;
exit(-1);
}
string pcre(expr.substr(1, flagsStart - 1));
string flagsStr(expr.substr(flagsStart + 1, expr.size() - flagsStart));
unsigned flag = parseFlags(flagsStr);
patterns.push_back(pcre);
flags.push_back(flag);
ids.push_back(id);
}
}
Zerion Mini Shell 1.0